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Generalized hydrodynamics and shock waves
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Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 2K6

~Received 6 December 1996; revised manuscript received 3 March 1997!

In this paper, the generalized hydrodynamic equations are applied to calculate the shock profiles, shock
widths, and calortropy production~energy dissipation! for a Maxwell and variable hard sphere gas. Shock
solutions are shown to exist for all Mach numbers (NM) studied, ranging up toNM510, but this upper Mach
number can be in principle extended to infinity. This is in contrast to the Grad moment equation method@H.
Grad, Commun. Pure Appl. Math,5, 257 ~1952!# which does not admit shock solutions forNM>1.65 and to
the method of Anile and Majorana@A. M. Anile and A. Majorana, Meccanica16, 149 ~1982!# and Weiss@W.
Weiss, Phys. Rev. E52, R5760~1995!# who also used moment equations and found the shock solutions do not
exist forNM>2.09 andNM>1.887, respectively. The difference of the present theory from the aforementioned
theories lies in the closure relations used for higher-order moments. The nonlinear factor in the dissipation
terms in the flux evolution equations of generalized hydrodynamics significantly contributes to producing the
shock width increasing with the Mach number. The results calculated are comparable with the Monte Carlo
simulation results and the results by various closures of the Mott-Smith method. The present method is also
applied to calculate the experimental shock widths for argon and found to give results in good agreement with
experiments. The energy dissipation is shown to increase withNM as (NM2a)a, wherea anda are positive
constants.@S1063-651X~97!07809-4#

PACS number~s!: 47.40.Hg, 47.40.Ki
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I. INTRODUCTION

Investigations on shock structures have been made
number of approaches in the past. They include the Nav
Stokes theory@1–3#, which historically precedes other ap
proaches that include the kinetic theory methods and Mo
Carlo and molecular dynamic simulation methods@4–10#.
The latter group of methods may be regarded as molec
theories of shock structures since they are essentially b
on either a kinetic equation or molecular equations of mot
for the particles in the system. In the kinetic theory metho
used for the study of shock structures, there are severa
proaches making use of the higher-order Chapman-Ens
solutions, namely, the Burnett and super-Burnett soluti
@11–13#, the bimodal distribution function method of Mot
Smith @14# and its generalizations@15–22#, and Grad’s mo-
ment method@23–26#. These molecular theoretic approach
have been taken because of the failure of the Navier-Sto
theory for shock structures for gases, which tends to fai
the hypersonic regime beyond the Mach number in
neighborhood of 1.5. When the Burnett- and super-Burn
order solutions of the Boltzmann equations are implemen
with the steady-state governing equations, they generally
to give adequate solutions for shock wave problems, but
recent work by Fiscko and Chapman@13# shows that reason
able results can be obtained for shock structures if so
terms in the Burnett-order solutions are simply neglected
the time-dependent governing equations are solved instea
the conventional steady-state governing equations used
steady shock wave problems. The precise reason is not

*Also at Dept. of Physics and Centre for the Physics of Materi
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why the time-dependent governing equations yield shock
lutions whereas the steady-state governing equations do
In any case, it must be noted that if the Burnett- and sup
Burnett-order solutions are examined from the viewpoint
the H theorem demanded by the Boltzmann equation, th
are inconsistent with it since they generally yield a nonpo
tive Boltzmann entropy production. Perhaps, the neglec
terms mentioned earlier in connection with the work by F
cko and Chapman may be responsible for restoring the c
sistency with theH theorem. The Mott-Smith method is
nonsystematic method based on a kinetic equation, for
ample, the Boltzmann equation, although it gives adequ
numerical results for shock structures and profiles which
vary with the moments taken to construct a bimodal dis
bution function. Grad@23# made a critique of this feature an
formulated a theory by means of moment equations deri
from the Boltzmann equation, but his thirteen moment eq
tions failed to give shock wave solutions as the Mach nu
ber exceeds the critical value ofNM51.65. Since his mo-
ment equations form an open set, Grad had to introd
closure relations for moments in order to get the thirte
moment equations. We will elaborate on his closures late
this paper. It must be noted that there is no unique way
introducing the closures to the Grad moment equations
present. Since it is credible to imagine that the moment
quence converges, the failure of the Grad approach insp
further research by a number of authors@24–26# who have
taken a larger number of moments or fashioned the mom
equations in supposedly more adequate forms. These st
gems did not succeed in removing the critical Mach num
problem of the Grad approach, and rather complicated m
ment equations which become quite difficult to solve do n
increase the critical Mach number significantly as evid
from the values known in the literature:NM51.85 in the
case of Holway,NM52.09 in the case of Anile and Majo

,
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2982 56MAZEN AL-GHOUL AND BYUNG CHAN EU
rana, and, most recently,NM51.887 by Weiss who used 2
moments. Therefore, the Grad method of closure, which
achieved by expressing the truncated~higher-order! mo-
ments in terms of the lower-order moments retained, d
not yield a set of continuum theory governing equatio
which yield shock solutions for all values of Mach numb
as does the Navier-Stokes theory, albeit poorly. This d
culty of the Grad moment equations derived from the Bo
zmann equation therefore is a challenge for the shock w
problem, and it is important to overcome it since the Gr
approach provides a simpler set of macroscopic equat
than the Chapman-Enskog method and hence is potent
more useful for formulating a macroscopic theory of irr
versible processes. In fact, it can serve as the starting poi
formulate a theory of irreversible processes as shown in R
@27# which is a theory aimed to generalize the classi
theory of linear irreversible thermodynamics@28#. Therefore,
the aforementioned difficulty in connection with the closu
poses a serious conceptual problem for the theory of irrev
ible processes based on the moment evolution equati
Such a theory ought to be able to account adequately
shock wave phenomena. Therefore, the shock wave prob
can serve as a touchstone for both irreversible thermodyn
ics and the approximate solution methods in the kine
theory of gases, and thus is an important problem to c
sider. As will be shown, the closure relations hold the key
the resolution of the problem and with suitable closures
obtain a well-behaved set of relatively simple governi
equations for flow which provide reliable and accurate n
merical results for shock phenomena.

In this paper, we study the question from the viewpoint
the generalized hydrodynamics formulated in the nonequ
rium ensemble method@29# and the version of extended ir
reversible thermodynamics@30# which is given statistical
mechanical foundations with the former. Since the gene
ized hydrodynamic equations employed are basically the
ment evolution equations, one can wonder if there is a
basis to hope that they will provide us with an adequ
solution to the problem. The answer is in the affirmativ
since the closure relations used for the constitutive equat
in this work make a crucial difference from those used
Grad@23# and others@24–26#. Furthermore, the application
of the steady constitutive equations subjected to the clo
relations used here have produced some results which a
quantitative agreement with experimental rheological d
@31–36#. Such agreements have been rather encouraging
we would like to show that similarly encouraging results c
be obtained for shock wave problems. In this work, we w
only consider a one-dimensional steady shock wave p
lem.

The present paper is organized as follows. In Sec. II,
present the governing equations for the one-dimensio
shock problem which are derived from the generalized
drodynamic equations presented in the previous wo
@27,29,30# related to the nonequilibrium ensemble meth
and extended irreversible thermodynamics formulated
one of us. The new closure relations are explicitly presen
In Sec. III, these governing equations are examined for sh
solutions. In Sec. IV, the governing equations are solved
shock profiles and shock widths for a Maxwell gas. The
verse shock widths calculated by the present theory fo
is
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Maxwell gas are compared with the Monte Carlo simulati
results, the results by the Mott-Smith method and its va
ants, and the Navier-Stokes theory results. Inverse sh
widths are also calculated by using a variable hard sph
model and compared with experimental data on argon. T
are found to be in good agreement with experiments. T
global calortropy production@29# is a measure of energy dis
sipation from a useful to a less useful form of energy
irreversible processes. We study its Mach number dep
dence. Section V is for discussion and conclusion.

II. GOVERNING GENERALIZED HYDRODYNAMIC
EQUATIONS

We assume that flow is in the direction of thex coordi-
nate. Since we are interested in a steady shock wave,
governing balance equations for mass, momentum, and
ergy are time independent. They are in the form

d

dx
ru50, ~1!

d

dx
~ru21p1Pxx!50, ~2!

d

dx FruS E1 1

2
u2D1u~p1Pxx!1QxG50, ~3!

wherer is the mass density,u is the fluid velocity,p is the
pressure,Pxx is the xx component of the shear stress,E is
the internal energy density, andQx is thex component of the
heat flux. We note that in one-dimensional flow geometry
the present problem

@“u#xx5
2

3
]xu. ~4!

These balance equations are supplemented by the evol
equations forPxx andQx within the framework of the first
thirteen moments. The evolution equation for the stress
sor and heat flux@27# are

r
dP̂

dt
52“•c222p@“u#~2!22@P•“u#~2!2

p

h0
Pq~k!,

~5!

r
dQ̂

dt
52“•c32pĈpT“ ln T2P•“ĥ1“~pd1P!•P̂

2Q•“u2
pĈpT

l0
Qq~k!, ~6!

whered is the unit second-rank tensor,d/dt5]/]t1u•“ is
the substantial time derivative, andc2 and c3 are higher-
order moments which are defined, in the case of a dil
monatomic gas, by the statistical formulas

c25^mC@CC#~2! f ~C;t !&,

c35 K 1

2
mC2CCf ~C;t !L , ~7!
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56 2983GENERALIZED HYDRODYNAMICS AND SHOCK WAVES
with C denoting the peculiar velocity andf (C;t) the non-
equilibrium distribution function obeying a kinetic equatio
say, the Boltzmann equation. The symbol@“u# (2) stands for
the traceless symmetric part of“u. Other symbols are a
follows: P denotes the traceless symmetric part of press
tensorP, P̂5P/r; Q is the heat flux,Q̂5Q/r; Ĉp is the
specific heat per mass at constant pressure;ĥ5ĈpT is the
enthalpy per mass;h0 andl0 are the Chapman-Enskog vis
cosity and thermal conductivity@37#, respectively; andq(k)
is a nonlinear factor defined by

q~k!5
sinhk

k
, ~8!

where

k5
~mkBT!1/4

&pd
S 1

2h0
P:P1

1

l0
Q•QD 1/2

. ~9!

Here d denotes the diameter of the molecule andm is the
molecular mass. In Eq.~6!, we have omitted a term related t
a third-rank tensor, namely,̂mCCCf (C;t)&:“u in accor-
dance with the spirit of the thirteen moment method. Furth
more, this term, even if taken into account, would not chan
the basic conclusion of this work; it will merely add to th
second term from the last in Eq.~6! if it is expressed in terms
of lower-order moments. The higher-order momentsc2 and
c3 obey their own evolution equations. Therefore, the e
lution equations~5! and ~6! are the leading members of a
open set of moment equations. It is usually closed by
pressingc2 andc3 in the lower-order moments, namely,P
andQ as well as the conserved momentsr, u, andE. Within
the first thirteen moment approximationc2 is proportional to
Q, whereasc3 is given in terms ofP. Such closure relations
give rise to partial differential equations forP andQ, which
form the governing equations for shock wave problems
the approaches@24–26# based on the moment equations fo
lowing Grad@23#. We have earlier mentioned that such a
proaches do not yield shock solutions for the Mach num
beyond a critical value. We propose a different set of c
sures in this paper.

We take the following closure relations forc2 and c3
appearing in the moment evolution equations forP andQ:

c25c350. ~10!

This set of closure relations is different from those taken
Grad’s theory of solution for the Boltzmann equation a
various existing variants of it, but there is noa priori reason
to disfavor the present closure relations over those wh
expandc2 andc3 in Q andP as well as density and tem
perature, since Grad’s closure does not have a theore
justification either. It is worthwhile to examine this closu
relation a little more closely in order to see its differen
from Grad’s closure. In Grad’s closure using the thirte
moments, the distribution functionf (C;t) is written as

f ~C;t !5 f 0S 11Ap :@CC#~2!1Aq•

1

2
mC2CD , ~11!
re

r-
e

-

-

n

-
r
-

n

h

al

n

where f 0 is the local equilibrium distribution function an
the coefficientsAp andAq are, respectively, proportional t
P and Q. It must be noted that in this approximation th
moments higher thanP andQ ~e.g., the third and fourth rank
tensors! are set equal to zero. Therefore, we find

c25
4

5
T•Q, c35

5p2

2r
d1

7p

2r
P, ~12!

whereT is an isotropic fourth-rank tensor defined by@27#

T i jkl 5
1

2
~d ikd j l 1d i l d jk!2

1

3
d i j dkl .

On the other hand, in the present theory the distribution fu
tion is written in an exponential form in terms of tens
Hermite polynomialsH(k)(w) (k>0) of reduced peculiar
velocity w5Am/kBTC as in

f ~C;t !5expF2
1

kBT S 1

2
mC21 (

k>1
XkH~k!~w!2m D G ,

~13!

wherem is the normalization factor andXk are the general-
ized potentials which depend only on macroscopic variab
such asP andQ. Then, it is possible to show that

c25AkBT/m@Q31Q1d#,

c35AkBT/m@Q41Q2d#, ~14!

whereQ3 , etc., are moments defined by

Qk5^H~k!~w! f ~C;t !&. ~15!

Therefore, the closures in Eq.~10! imply that in the present
theory the higher-order-momentsQ3 , Q4 , etc., are ex-
pressed as follows:

Q352Q1d50, Q452Q2d52Pd. ~16!

Note thatQ25P sinceH(2)(w)5ww2d, andQ150. These
results should be examined in the context of Grad’s exp
sion ~11! for f where the third-, fourth-,..., rank tensor term
are set equal to zero. Since both the Grad’s and the pre
closure express the higher-order moments in terms of low
order moments, the same idea is used but their manner
implementation are different. However, despite the sa
idea the different manners of implementation make their
plications greatly different as we will see in the case of sho
structures obtained.

With the closure relations~10! the constitutive equations
are given by

r
dP̂

dt
522p@“u#~2!22@P•“u#~2!2

p

h0
Pq~k!,

~17!
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2984 56MAZEN AL-GHOUL AND BYUNG CHAN EU
r
dQ̂

dt
52pĈpT“ ln T2P•“ĥ1“~pd1P!•P̂2Q•¹u

2
pĈpT

l0
Qq~k!. ~18!

We have shown in a number of studies@27,31–36# on non-
linear transport coefficients that the constitutive equati
~19! and ~20! give rise to sufficiently accurate nonlinea
transport coefficients and particularly non-Newtonian v
cosities in comparison with experiments. On the strength
this finding, we take the closure relations in Eq.~10! and
show their effectiveness for the shock wave problem. We
thereby able to formulate a continuum hydrodynamic the
of shock waves which provides shock solutions beyond
critical Mach numbers mentioned earlier in connection w
the moment method approaches. Based on the examin
of the direction field for the governing equations in t
present theory, it will become evident that shock solutio
should exist for all Mach numbers.

The nonconserved variables such asP and Q vary on a
faster time scale than the conserved variables such as
density, energy~or temperature!, and momentum~or fluid
velocity!. Therefore, on the time scale of variation in th
conserved variables the nonconserved variables have alr
reached their steady state, and it can be shown@27# that the
following approximate constitutive equations hold forP and
Q:

22p@“u#~2!22@P•“u#~2!2
p

h0
Pq~k!50, ~19!

2pĈpT“ ln T2P•“ĥ1“~pd1P!•P̂2Q•“u

2
pĈpT

l0
Qq~k!50. ~20!

This approximation is called the adiabatic approximatio
The utility of this approximation has successfully been tes
for a number of flow problems@27#. We use these constitu
tive equations in the present work for shock waves.

In the case of flow geometry for the present problem,
steady-state constitutive equations forPxx andQx under the
closure relations mentioned are obtained from Eq.~5! and
Eq. ~6! as follows:

p

h0
Pxxq~k!1

4

3
Pxx]xu1

4

3
p]xu50, ~21!

ĥp

l0
Qxq~k!1Qx]xu1Pxxu]xu1ĥ~p1Pxx!]x lnT50.

~22!

Equations~21! and ~22! are partial differential equations fo
velocity componentu and temperatureT. We emphasize tha
there do not appear partial derivatives ofPxx andQx in these
equations owing to the closure relations taken.

Integration of the balance equations~1!–~3! yields

ru5M , ~23!
s

-
f

re
y
e

ion

s

the

dy

.
d

e

ru21p1Pxx5P, ~24!

ruS E1 1

2
u2D1u~p1Pxx!1Qx5Q, ~25!

where M , P, and Q are integration constants with the d
mension of momentum per volume, momentum flux per v
ume, and energy flow per volume, respectively. These eq
tions are also supplemented by the equation of state and
caloric equation of state

p5rRT,

E5
3

2
RT, ~26!

whereR is the gas constant per mass. Let us define dim
sionless variables

v5MuP21, u5M2RTP22,

s5PxxP
21, f5pP21,

r 5PrM 22, w5QxQ
21,

j5xl21, a5MQP22. ~27!

The length scale is provided by the mean free pathl defined
with the upstream momentum per volume,M5r1u1 , where
the subscript 1 refers to the upstream. The downstream
be designated by subscript 2. The upstream mean free pa
defined by

l 5
h01

M
, ~28!

where h01 is the upstream Newtonian viscosity at the u
stream temperatureT1 . The transport coefficientsh0 andl0
are reduced with respect to the upstream transport co
cientsh01 andl01, respectively:

h* 5
h0

h01
, l* 5

l0

l01
. ~29!

With these reduced variables we cast Eqs.~23!–~26! in the
forms

f5ru,

rv51,

rv21f1s51,

rv315fv12sv12aw5a. ~30!

From these equations and on reducing constitutive equat
~21! and ~22! we obtain the following five equations;

fv5u, ~31!

v1f1s51, ~32!

v215u12sv12aw5a, ~33!
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1

h*
fsq~k!1

4

3
s]jv1

4

3
f]jv50, ~34!

ab

l*
uwq~k!1~aw1vs!]jv1

5

2
u~f1s!]j ln u50.

~35!

Here the new dimensionless parameterb is defined by

b5
5

3u1
NPr ~36!

with u1 denoting the reduced upstream temperature and
Prandtl number defined with the upstream quantitiesNPr

5ĈpT1h01/l01. Since the reduction scheme used here
slightly different from that in the literature@3,23#, it is useful
to explain it, especially, with regard to the appearance of
dimensionless numberb in Eq. ~35!. On multiplication of the
mean free pathl , the first term in Eq.~22!, apart from the
nonlinear factorq(k), can be reduced as follows:

l
ĥp

l0
Qx5

5tfw

2l*
•

lP3Q

l01M
2 ,

where the second factor on the right can be written as

lP3Q

l01M
2 5

h01

l01
•

P3Q

M3 5
2NPr

5u1
•a•

P2

M2 .

The second equality in the equation above follows on m
ing use of the definition of Prandtl number and the redu
temperature. Finally, we obtain

l
ĥp

l0
Qx5

abtfw

l*
•

P2

M2

and Eq.~35! follows on dividing the equation withP2M 22

and use of the definition ofb in Eq. ~36!. The argumentk in
the nonlinear factorq(k) is given by the formula

k54~2g0!21/4~5cNM !21/2S u

u1
D 1/4 1

fAh*

3S f21
8

15f u
a2w2D 1/2

, ~37!

where

c5
l

l h
, f 5

4ml01

15kBT1h01
~38!

with l h denoting the mean free path for hard spheres in te
of the hard sphere viscosityl h5h01(hard sphere)/M . In the
case of a Maxwell gas,f 51 and

c5
16

15A2pA2~5!
Au1

Ed
,

whereA2(5)50.436 and
he

s

e

-
d

s

Ed5
Vm

4md4 •

M2

P2 ,

which is the reduced Maxwell potential energy of potent
strengthVm for two hard spheres of radiusd/2 at contact.
This reduced potential energy is set equal to unity by s
ably choosing the reduction parametersM andP. Therefore,
for Maxwell molecules withEd so taken we obtain

k5S 3p

5 D 1/4S 3A2~5!

NM
D 1/2 1

fu1/4 S s21
8

15u
a2w2D 1/2

.

~39!

We note that the parametera is related to the upstream Mac
number as follows:

NM5A11~1/5!m

12~1/3!m
, ~40!

where

m5A25216a. ~41!

The parameterm ranges from 0 to 3 which yieldsNM5`.
Note that the upstream Mach number can be equivale
defined by

NM5
v1

Ag0u1

,

whereg0 is the polytropic ratiog05Cp /Cv .
To determine the boundary conditions onv, f, andu, we

observe thats→0 andw→0 asj→6`. Equations~34! and
~35! are identically satisfied in the limits ifv andu become
independent ofj at the boundaries. Therefore, asj→6`

s,f→0, ~42!

u5fv, ~43!

v1f51, ~44!

v215u5a. ~45!

The solutions of Eqs.~43!–~45! are

v5
1

8
~56m!, ~46!

f5
1

8
~37m!, ~47!

u5
1

64
~1572m2m2!. ~48!

The upper sign is for the upstream and the lower sign is
the downstream. These solutions provide the boundary c
ditions at the upstream and downstream. They also im
that the reduced density is given by

r 5
8

56m
. ~49!
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2986 56MAZEN AL-GHOUL AND BYUNG CHAN EU
With the help of Eqs.~31!–~33! the differential equations
~34! and ~35! may be cast into the following forms:

dv
dj

5
3u~v22v1u!

4h* v2~12v !
q~k!, ~50!

du

dj
52

u

5v2~12v !2 Fbuv~12v !~a1v222v23u!

l*

1
3~v22v1u!~a2v225u!

4h* Gq~k!. ~51!

These governing equations for shock profiles are solved
ject to the boundary conditions in Eqs.~46!–~48!. These
equations generalize the governing equations in the Nav
Stokes theory as will be discussed presently.

III. SHOCK SOLUTIONS
OF THE GOVERNING EQUATIONS

The second term on the right-hand side of Eq.~51! stems
from the thermoviscous effect involving the second and th
terms as well as the termĥPxx]x ln T in Eq. ~22!. These,
together with the second term in Eq.~21!, are the terms tha
do not appear in the Navier-Stokes-Fourier theory. To in
cate the difference between the governing equations in
classical Navier-Stokes-Fourier theory and the present th
and to facilitate the solution procedure for Eqs.~50! and
~51!, we present the governing equations for a on
dimensional shock wave in the former theory

dv
dj

5
3~v22v1u!

4h* v
, ~52!

du

dj
52

ub~a1v222v23u!

5l*
. ~53!

These equations follow from Eqs.~50! and ~51!, if 12v is
replaced byf, Eq. ~43! is made use of, and the second te
on the right-hand side of Eq.~51! is omitted since it arises
from the thermoviscous coupling term that must vanish
the linear order. Clearly, Eqs.~52! and~53! are special case
of Eqs.~50! and ~51!.

We note that in the case of a hard sphere gas the red
transport coefficientsh* andl* depend onu only:

h* 5S u

u1
D 1/2

, l* 5S u

u1
D 3/2

. ~54!

To facilitate comparison of the present governing equati
with the governing equations in the literature, we note
relation between the reduced distancej in the present work
with the reduced distancez in the literature:

j5
x

l
5zA5p

6
NM . ~55!

This relation stems from the difference in the definitions
mean free path in the present work and the literature wh
has been used to reduce the governing equations. The
duced distancez is defined asz5x/ l n where the mean free
b-

r-

d

i-
e
ry

-

n

ed

s
e

f
h
re-

path l n is given by l n5(h01/r1)Ap/2RT1. The governing
equations~50! and~51! are quite different from the evolution
equations fors and w appearing in the moment equatio
approach of Grad@23#. The governing equations in the latte
approach, which are differential equations for the stress
sor and heat flux, were found to fail to produce shock so
tions for NM>1.65. The differential equations fors and w
arise in the Grad theory, primarily because of the particu
closure relations forc2 andc3 taken, which inevitably give
rise to spatial derivatives ofc2 andc3 . In the following we
examine the governing equations~50! and~51! and the exis-
tence of shock solutions with the help of singularities of t
direction field equation.

Here we will examine the governing equations in the ca
of the transport coefficients satisfying Eq.~54!. For the
Navier-Stokes theory the direction field equation is given

dv
du

5
v~v22v1u!

v~3u12v2v22a!
, ~56!

where

v5
15l*

4bh* u
. ~57!

It is independent ofu for the transport coefficients obeyin
Eq. ~54!. The singularities of the direction field are given b

v22v1u50,

v222v23u1a50,

v50. ~58!

There are three singular points:

P0 :v5
1

8
~51m!, u5

1

64
~1522m2m2!,

P1 :v5
1

8
~52m!, u5

1

64
~1512m2m2!,

P2 :v50, u50.

Note thatP0 andP1 coincide with the boundary values give
in Eqs.~46! and~48!. We remark thatP0 andP1 are also the
singular points of the governing equations~52! and ~53! for
the Navier-Stokes theory where the derivativesdv/dj and
du/dj vanish. It can be shown by calculating the eigenv
ues of the linearized governing equations, thatP0 is a saddle
point whereasP1 is a node andP2 is a spiral. The shock
solution is a curve connectingP0 and P1 as j→` from j
52`. It is possible to show that there exists a unique su
solution for every value ofa @3,23# since the aforementione
nature ofP0 andP1 remains invariant for all Mach numbers
Therefore, the Navier-Stokes theory admits shock soluti
for all values of Mach number.

We now examine the governing equations~50! and ~51!
by using the direction field equation
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dv
du

5
2v~12v !~v22v1u!

@v~12v !~v222v23u1a!13/4b~v22v1u!~a2v225u!#
. ~59!
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It is interesting to see that the nonlinear factorq(k) does not
appear in this equation and thus the singularities of the
rection field is not affected by the nonlinear factor. The s
gularities of the direction field are given by the equations

12v50, ~60!

v22v1u50, ~61!

v~12v !~v222v23u1a!

1
3

4b
~v22v1u!~a2v225u!50. ~62!

The first two equations are for the loci of zero slop
whereas the last equation is for the loci of infinite slopes.
~62! factorizes to the form

15

4b
~u2B1AB21A!~u2B2AB21A!50, ~63!

where

A5
4b

15
v~v21!F S 12

3

4b Da1S 11
3

4b D v222v G ,
~64!

B5
2b

5 F S 12
1

b D v22S 12
5

4b D v2
3

4b
aG . ~65!

The intersections of the curves arising from Eqs.~60!–~62!
are the following five points:

P0 :v5
1

8
~51m!, u5

1

64
~1522m2m2!,

P1 :v5
1

8
~52m!, u5

1

64
~1512m2m2!,

P2 v50, u50,

P3 :v51, u50,

P4 :v51, u5
1

5
~a21!.

The singularitiesP0 , P1 , and P2 coincide with the singu-
larities of the Navier-Stokes equations. It can be shown
P0 and P1 are also a saddle point and a node, respectiv
whereasP2 is a spiral as in the case of Navier-Stokes theo
An example of loci of zero and infinite slopes for both t
Navier-Stokes and present theories are plotted in the cas
NM52 in Fig. 1, where the broken line is for the Navie
Stokes theory and the heavy solid line is for both the Nav
Stokes and present theories, whereas the light line is for
present theory only. The light line is a closed loop. The po
i-
-

.

at
y,
.

of

r-
he
t

P2 is located at the origin of the (v,u) coordinates, wherea
pointsP3 andP4 are the intersection of the closed loop wi
line v51. Both theories share the same inverted parab
~heavy line! which intersects the broken line and the clos
loop described by Eq.~62! or Eq.~63! at the same pointsP0
andP1 . PointP3 is neutral in a direction and unstable in th
other, whereasP4 is unstable—an unstable focus. It ther
fore means that both theories not only share the same bo
ary conditions at the upstream and downstream, but a
have an intersection of domains which are bounded
curves of negative slopes and where the shock solutions
SingularitiesP3 and P4 are not associated with shock sol
tions. It must be noted that linev50 is neither the locus of
zero slopes nor the locus of infinite slopes. As the Ma
number increases, the intersectionsP0 , P3 , andP4 coalesce
at v51 which corresponds to the boundary value for velo
ity at infinite Mach number. This situation is almost achiev
at NM510 as shown in Fig. 2. The shock solution mu
connectP0 andP1 . The fact that the singularitiesP0 andP1
are shared by both theories and there is an intersectio
domains where the slopes are negative means that a s
solution must exist for the governing equations~50! and~51!
for all Mach numbers as is the case for the Navier-Sto
equations for all Mach numbers. The uniqueness follo
from the uniqueness of the solution to Eq.~59!.

FIG. 1. Loci of zero and infinite slopes in the direction field f
the Navier-Stokes and generalized hydrodynamic theories in
case ofNM52. The broken line is for the Navier-Stokes theo
whereas the heavy line is for both the Navier-Stokes and pre
theories. The light lines are for the present theory which predic
closed loop for a locus. Both theories share the same point
intersectionP0 and P1 as well asP2 and the domain of negative
slopes bounded by curves passing throughP0 andP1 . Shock solu-
tions lie in the domain and connectP0 andP1 . PointsP2 andP3 ,
which are intersections of the closed loop and the bold solid li
and P4 , which is the intersection of the closed loop and linev
51, are not indicated in the figure. One of the parabolas wh
should appear in the the upper left corner is out of the picture in
present figure.
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IV. NUMERICAL RESULTS AND COMPARISON
WITH SIMULATION DATA

A. Shock profiles and widths

The governing equations are numerically solved sub
to the boundary conditions given in Eqs.~50! and~51!. Some
examples for shock profiles for velocity and density a
given for a few values of Mach number in Figs. 3 and 4.
these and other figures in this work, the solid line is
NM51.5, the bold solid line is forNM52, the dashed line is
for NM55, the dotted line is forNM58, and the dash-dotte
line is for NM510. The corresponding values for the stre
~s! and heat flux~w! are plotted in Fig. 5. In the literature
the shock widthd is defined by means of the density profi
in the following form:

d5
n22n1

~dn/dz!max
, ~66!

where the reduced distancez has the relation to the reduce

FIG. 2. Same as Fig. 1 except forNM510. Notice thatP0 al-
ready has almost approached pointP3 at v51, u50. The closed
loop in Fig. 1 becomes almost rectangular with the minimum
aboutu'250. The parabola at the upper right corner almost me
with the closed loop atv51 andu50.

FIG. 3. Shock profiles for velocity for various Mach numbe
for a Maxwell gas. Solid line:NM51.5; bold solid line:NM52;
dashed line:NM55; dotted line:NM58; dash-dotted line:NM

510.
ct

r

s

distancej used in this work; see Eq.~55!. In Fig. 6 the shock
widths calculated~˝! by the present theory are compare
with Monte Carlo simulation data~* ! by Nanbu and Wa-
tanabe@5#, the results by the Mott-SmithCx

2 (1) andCx
3 ~h!

closures@14#, and the results by Salwenet al. who modified
the Mott-Smith method to include an additional mome
@e.g., (Cx

2,CxC
2) ~3! or (Cx

3,CxC
2) ~L! closures# @16#. The

solid line is drawn through the results of the present theory
guide the eyes. The Navier-Stokes predictions are prese

t
ts

FIG. 4. Shock profiles for density for various Mach numbers
a Maxwell gas. The same meanings for the lines as in Fig. 3.

FIG. 5. Shock profiles for stress and heat flux for various Ma
numbers for a Maxwell gas. The same meanings for the lines a
Fig. 3.
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in Table I together with the inverse shock width values
the points appearing in Fig. 6. Since the differential eq
tions ~50! and ~51! are stiff, the solutions are obtained b
using Gear’s method with a relatively high tolerance
(,1024). Therefore, the numerical results are not of hi
precision, but they are adequate for comparison. The pre
results obtained are closer to those by the Mott-SmithCx

3

closure~h! for all Mach numbers examined whereas th
differ from the Monte Carlo simulation data~* ! of Nanbu
and Watanabe by 14 to 20 %. Note that the Monte Ca
simulation results well agree with the results by the Mo
Smith Cx

2 closure (1), but this method of closure does n
give results convergent with those by the Mott-SmithCx

3

FIG. 6. Inverse shock width vsNM for a Maxwell gas. The solid
line is drawn through the present results to guide the eyes.
meanings of the symbols are as follows:˝: present result;* : Monte
Carlo result of Nanbu and Watanabe@5#; 1: Mott-SmithCx

2 closure
@5#; h: Mott-Smith Cx

3 closure @16#; 3: Mott-Smith (Cx
2,CxC

2)
closure@16#; L: Mott-Smith (Cc

3,CxC
2) closure@16#.
r
-

nt

o
-

closure~h!. The Monte Carlo simulation method of Nanb
and Watanabe@5# is a modification of Bird’s method@4# and,
especially, its treatment of collisions is basically the same
in the latter method. Consequently, the method of Nanbu
Watanabe, as expected and noted by them@5#, gives the
same results as by the Bird method. Since the Mott-Sm
method can be by no means regarded as exact and theCx

2 and
Cx

3 closures give divergent results, the converged results
quite probably located elsewhere if the method ever yie
convergent results as the number of moments include
increased. The reason for this expectation can be seen in
work of Salwenet al. @16# which gives different values from
those by the Mott-SmithCx

2 closure for the inverse shoc
width. Interestingly, the Mott-SmithCx

2 closure method
yields the shock widths which coincide with the results o
tained by the Monte Carlo simulation method of Nanbu a
Watanabe@5#, who report that the same results also are o
tained by the method of Bird@4#. Since the simulation result
by Yen and Ng@7# differ from those of Nanbu and Wa
tanabe, it is not clear where true values lie. The compari
made in Fig. 6 therefore does not resolve the question
garding the accuracy and reliability of the present continu
theory method, although it produces results that appea
have a qualitatively correct behavior with regard to the Ma
number dependence in the entire regime of Mach numbe

To resolve this question, we have performed a calculat
with a variable hard sphere model which gives the viscos
as h05m0(T/T0)s, wherem0 and T0 are constants and w
have takens50.75 in this work. This value ofs lies between
0.72 for the shock tube value and 0.81 for the wind tun
value suggested in Ref.@6#. This model has been tested
connection with shock widths for argon and helium@6#. To
make a comparison of the results by the formulas in
present theory with experiment it is necessary to use a so
what different length scale from the scale given in Eq.~55!.
This difference arises from the different definitions of me
free path. The experimental data in question are based on
definition of mean free path by Bird @38# l B

e

TABLE I. Inverse shock widths by various theories for a Maxwell gas. M-S2: Mott-SmithCx
2 closure, M-S3: Mott-SmithCx

3 closure@14#;
SGZ23: Salwen, Grosch, Ziering (Cx

2,CxC
2) closure, SGZ33: Salwen, Grosch, Ziering (Cx

3,CxC
2) closure@16#; MC: Monte Carlo@5#; NS:

Navier-Stokes.

NM M-S2 M-S3 SGZ23 SGZ33 MC Present NS

1.2 0.0557 0.0504 0.0653 0.0650 0.0651
1.5 0.124 0.116 0.136 0.143 0.147
1.7 0.152a 0.164 0.173 0.188
2 0.184 0.193 0.192 0.212 0.193 0.226 0.232
2.25 0.198 0.218 0.200 0.224
2.5 0.201a 0.202 0.239 0.275
3 0.206 0.251 0.196 0.223 0.205 0.244 0.293
4 0.188 0.248 0.170 0.193 0.186 0.228
5 0.165 0.228 0.146 0.165 0.163 0.208
6 0.143a 0.145 0.185
7 0.127a 0.128 0.163
8 0.113a 0.116 0.146
9 0.102a 0.105 0.135

10 0.0945 0.138 0.0804 0.0902 0.0925 0.123

aData from Ref.@5#.
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2990 56MAZEN AL-GHOUL AND BYUNG CHAN EU
5(h01/r1)BAp/2RT1 where B5(722s)(522s)/24. For
this definition of mean free path the reduced distancej in the
present theory is related to the reduced distance used fo
experimental data considered here as follows:

z5zBA5p

6
NM . ~67!

Therefore, the shock widths are calculated with the form

d5BA5p

6
NM

n22n1

~dn/dj!max
. ~68!

The results calculated~˝! for the variable hard-sphere mod
are compared with various experimental data reported
Alsmeyer @39# ~h!, Schmidt @40# ~z!, Garenet al. @41#
(1), Linzer and Hornig@42# ~L!, and Camac@43# ~3! in
Fig. 7. A line is drawn through the theoretical values in ord
to guide the eyes. Although the data of Linzer and Hor
and Camac do not appear to be consistent with the dat
Alsmeyer, Schmidt, and Garenet al. and therefore are diffi-
cult to analyze with the present theory together with those
the latter, they are included in the figure for completene
Given the experimental uncertainties~4–5 % according to
Alsmeyer! and the errors in the numerical solutions of t
governing equations, the theoretical results are judged to
in good agreement with experiment and, especially, w
those by Alsmeyer, Schmidt, and Garenet al. In fact, the
agreement with Alsmeyer’s data is excellent. Therefore
can be concluded that the present theory yields reliable
sults for inverse shock widths over the entire experimen
range of Mach number.

The present theory is a continuum hydrodynamic the
for shock waves, and it provides shock structures adequa
for the range of Mach number studied by other methods

FIG. 7. Comparison of theoretical inverse shock widths w
experimental data at various Mach numbers. A variable hard-sp
model is used for the potential for whichh05m0(T/T0)s with s
50.75.˝: present theory,h: Alsmeyer@39#, z: Schmidt@40#, 1:
Garenet al. @41#, L: Linzer and Hornig@42#, and3: Camac@43#.
A solid line is drawn through the theoretical values to guide
eyes.
the
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by experiments. This is in contrast to the Navier-Stok
theory and other approaches@23–25# in the moment method
mentioned earlier. As far as the present authors are aw
there is no continuum hydrodynamic theory to have acco
plished such results comparable with experiments over
entire range of Mach number studied. We thus have achie
an adequate continuum theory generalization of the Nav
Stokes theory for shock waves in the hypersonic regime,
the closure relations, together with the nonlinear factorq(k),
taken for the constitutive equations for the stress tensor
heat flux hold the key to the results obtained.

B. Calortropy production—energy dissipation

Energy dissipation is closely associated with shock wa
phenomena. It competes with compression in determin
the thickness of a shock wave. Therefore, it is interesting
examine energy dissipation@44#. In the framework of irre-
versible thermodynamics on which the present theory
based, the calortropy production@30# gives a measure of en
ergy dissipation in the system from a useful to less use
form. We have calculated the calortropy production asso
ated with shock waves for various Mach numbers. For
constitutive equations the calortropy production is given
@27#

scal5kBgk~P,Q!sinhk~P,Q!, ~69!

whereg5(m/kBT)1/2/2n2d2. Therefore a reduced calortrop
production relative to the upstream condition may be defin
by

ŝcal5scal/kBg~T1 ,n1!5A u

u1
S r 1

r D 2

k~s,w!sinhk~s,w!.

~70!

The reduced calortropy production is computed from
shock solutions obtained and presented in Fig. 8. It is pea
around the transition point in the shock profile and the pe

re

e

FIG. 8. Profiles for reduced calortropy production for vario
Mach numbers for a Maxwell gas. The same meanings for the l
as in Fig. 3. The case forNM51.5 is invisible in the scale of the
figure.
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56 2991GENERALIZED HYDRODYNAMICS AND SHOCK WAVES
height increases with the Mach number. In the scale of
figure ŝcal is so small forNM51.5 that it does not show up
in the figure.

Since the global value for calortropy production is of i
terest and perhaps more relevant to the present problem
define a reduced integral calortropy production

Jc5E
2`

`

djA u

u1
S r 1

r D 2

k~s,w!sinhk~s,w!

5A5p

6
NME

2`

`

dzA u

u1
S v
v1

D 2

k~s,w!sinhk~s,w!.

~71!

This global calortropy production has been calculated a
function of Mach number in the case of the Maxwell mod
The results of the calculation show thatJc increases with
Mach number as (NM2a)a; namely,

Jc5K~NM2a!a, ~72!

whereK, a, anda are constant parameters. For the Maxw
modela.0.85 anda.3.14, whereasa.0.87 anda.2.98
for the variable hard sphere model withs50.75. It probably
is fair to takea53.0 as an approximation, given the unce
tainties of the numerical results and curve fittings. This
ergy dissipation competes with the compressional effec
shock in determining the shock thickness.

V. DISCUSSION AND CONCLUSION

In this paper we have presented a continuum hydro
namic theory of shock waves which yields shock structu
~shock widths! comparable to those by Monte Carlo metho
and the Mott-Smith methods over the entire range of Ma
numbers studied for the Maxwell model of potential. It r
moves the weakness of the Navier-Stokes theory of sh
waves. However, the present results agree only within 1
20 % with the Monte Carlo results obtained by Nanbu a
Watanabe@5# and with the results by the Mott-SmithCx

2

closure method. Our present results are closer in per
mance to those by the Mott-SmithCx

3 closure method. Since
none of the Mott-Smith methods can be judged to be ex
and they yield nonconvergent numerical results for the
verse shock widths for the Maxwell model, it is difficult t
conclude which one is closer to the true values for sh
widths. To resolve this question, we have computed the
verse shock widths by the present theory for a variable h
sphere model and compared the results with experime
data on argon. They are found to be in good agreement
experiments. Thus, we now have a continuum hydrodyna
theory for shock waves which correctly performs beyond
regime of Mach number where the classical Navier-Sto
theory remains useful. Such a theory is designed from
moment equations derived from the Boltzmann kinetic eq
tion, primarily, by using different closures from those used
the moment methods by others for the same purpose.
performance of the governing equations is enhanced by
presence of the nonlinear factorq(k) which basically arises
on resummation of the Boltzmann collision contributions
all Knudsen numbers. The present theory is thermodyna
e

we
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cally consistent in the sense that it conforms to the requ
ment of thermodynamic laws. The aforementioned nonlin
factor is known to be responsible for correctly accounting
the shear rate dependence of fluids in the non-Newton
regime of viscosity@31–36#, the emergence@45# of boundary
layers in flows under a steep pressure gradient, plug flo
@46,47#, the resolution@48# of the Knudsen paradox@49#, etc.
The nonlinear factorq(k) is not present in the moment equ
tions in the conventional approach following the formulati
of Grad’s moment method. As is evident from Eq.~70!, q(k)
is closely related to the calortropy production arising fro
the irreversible process in the system since Eq.~70! can be
recast in the form

scal5kBgk2~P,Q!q~k!>0. ~73!

Since k2(P,Q) is basically the Rayleigh dissipation func
tion, this nonlinear factorq(k) modifies the Rayleigh dissi
pation function@50# because there are nonlinear transp
processes present in the system.

The generalized hydrodynamic equations presented in
work have been derived from the Boltzmann equation
dilute gases. Therefore, one may infer that they are limited
such gases. However, it is shown in the literature@27# that
essentially the same forms of evolution equations hold
liquids and for dense gases except for the meanings of
parameters appearing in the equations which must be
garded as those for liquids or dense gases. More specific
one can simply regard the transport coefficientsh0 andl0 as
well asp andĈp in the constitutive equations~19! and~20!
as those for the liquid or dense gas in question and ap
them to flow problems in such fluids. Therefore, the go
agreement of the theoretical results with experiments s
gests the utility of the present generalized hydrodynam
approach to shock wave phenomena in liquids or dense g
where Monte Carlo simulation methods comparable to th
of Bird and Nanbu and Watanabe are not available
present. In this connection, we note that there are some
lecular dynamics simulations on shock waves in liqu
@8–10#. In conclusion, we believe that, together with the co
servation laws for mass, momentum, and energy, the con
tutive equations forP andQ presented in this work form a
continuum~generalized hydrodynamic! theory of flow phe-
nomena including shock waves.

Finally, we would like to add a note in connection wit
the closure relations leading to Eqs.~19! and ~20!, which
arise in the adiabatic approximation. Instead of the clos
relations in Eq.~10!, one may treatrdP̂/dt1“•c2 and
rdQ̂/dt1“•c3 as a perturbation in Eqs.~5! and~6!, respec-
tively. Then, the steady-state constitutive equations~19! and
~20! arise as the lowest-order approximations to Eqs.~5! and
~6! in the perturbation theory applied to the generalized
drodynamic equations within the framework of the first th
teen moments.
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